On April 2014, Dr Liz, Matthew, Megan, Mike and Giselle (exchange student from UFRJ) collected microbial samples from Kelp forests off coast of Catalina Island.
Elizabeth Dinsdale
2012 Science Outreach in San Diego, CA
{gallery}expeditions/CMIL2012{/gallery}
Every year, the Dinsdale Lab participates in the Coastal and Marine Institute Laboratory Open House through SDSU’s Marine Ecology and Biology Student Association.
California Sea Lion Genome Sequencing and Annotation
We have sequenced the Sea Lion Genome thanks to the alumni of SDSU’s BIO596 class. Assembly and annotation of this massive Eukaryotic genome (~24 billion bp sequenced) is underway under Liz’s supervision. More information about this project can be found on our California Sea Lion Genome website.
2011 Research Expedition to Abrolhos, Brazil
{gallery}expeditions/2011brazil{/gallery}
Matt, Liz, and Rob went to the Abrolhos Islands as part of a collaboration with Universidad Federal do Rio de Janeiro. Water column and coral reef metagenomes and chemical samples were collected to assess the health of the Abrolhos holobiont.
2010 Sampling Expedition out of Valdivia, Chile
Nori, Matt and Liz went to Chile as part of a collaboration with the Centro de Estudios Cientificos (CECS), Valdivia, Chile. Metagenomes and microbial abundance counts were collected on a transect from Arica at sea-level to the Atacama Desert at 14,000 feet.
2009 Research Expedition off Iquique, Chile
Alejandra, Julia and Nori went on the third annual Oxygen Minimum Zone expedition. Marine metagenomes, abundance counts, and dissolved organic carbon samples were collected as part of the international effort to characterize the low-oxygen environment.
Metagenomic Analysis of Oxygen Minimum Zone Viral Communities
Part of an international collaboration: ETSP OMZ.
OMZs are coastal marine areas that contain a hypoxic layer of <20 µM of dissolved oxygen. In the ETSP OMZ, microbes (small Eukaryotes, Bacteria, Archaea, and Viruses) metabolize nitrogen, carbon, and sulfur in the absence of oxygen. Sampling over three consecutive years, we have found that the ratio of virus-like particles to microbes fluctuates wildly in the anoxic layers and, unusually, reaches a 1:1 at some depths. Analysis of the prophage and viral communities from these unique marine habitats are in progress. These two viral metagenomes exhibit distinct community structures, indicating successful induction of OMZ prophages. Further analysis includes fine-grained investigation of the OMZ viral and prophage metabolism compared to the microbes.
Copper Tolerance of Kelp-Associated Bacteria
Kelp forests are one of the most widespread and productive of all ecosystems. They provide habitat and nutrition to diverse communities of microorganisms, invertebrates, and mammals. Many kelp forests are dominated byMacrocystis pyrifera, a species of large brown algae that produce negatively charged polysaccharides on their cell surfaces. The polysaccharides allow Macrocystis to accumulate heavy metals such as copper, normally an essential element involved in cellular pathways. Brown algae in environments with higher levels of heavy metals, such as those near human activity, accumulate toxic levels of copper by producing larger amounts of polysaccharides. Toxic amounts of copper can then bioaccumulate up the food chain.
Microbial Ecology of the Alaskan Tundra
Collaboration with Dr. David Lipson, Department of Ecology, SDSU
In arctic peat soils, iron reduction is an important pathway for respiration in anaerobic environments. We are interested in the factors that contribute to CO2 and CH4 fluxes from the arctic soil ecosystem, especially the microbial communities. We are investigating metagenomes acquired from different depths of our research site on the Arctic Coastal plain near Barrow, Alaska. The soil bacterial metagenomes were acquired from depths of 0 – 10m, 10-20m, 20-30m and 30-40m from the research site. Once the soil DNA was extracted, sequenced and assembled, they were uploaded onto the MG – RAST server (Metagenome – Rapid Annotation using Subsystems Technology) and annotated. I am currently comparing these metagenomes to look for similarities and more importantly, the differences and track the major metabolic pathways and functions at each depth in the Arctic tundra.